US009218386B2

a2z United States Patent (10) Patent No.: US 9,218,386 B2
Xu et al. 45) Date of Patent: Dec. 22, 2015
(54) DUAL LOCKING MECHANISM FOR A (58) Field of Classification Search
DOMAIN CPC GOG6F 17/30348; GOGF 17/246; GO6F
17/2247; GOGF 17/30424; GO6F 17/30876;
(75) Inventors: Jianwu Xu, Dunwoody, GA (US); Gog}li)élz/é/oz%%’(}(%%a; /ég/3(()}%26315 8(/}6056 F (5%76113;
Larry Roddenberry, Atlanta, GA (US); ’ ’ ’ 3/61
Mehdi Khosravi, Johns Creck, GA (US) USPC oo 707/694
See application file for complete search history.
(73) Assignee: ORACLE INTERNATIONAL .
CORPORATION, Redwood Shores, (56) References Cited
CA (US) U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this 5,359,724 A : 10/1994 Earle
tent is extended or adiusted under 35 2005/0289143 Al* 12/2005 Oshrietal.cccccoeveeeenn. 707/8
pa J 2008/0243913 AL* 10/2008 Suvernev et al. ... 707/103 R
U.S.C. 154(b) by 669 days.
* cited by examiner
(21) Appl. No.: 13/292,644 Primary Examiner — Jay Morrison
Assistant Examiner — Bruce Witzenburg
(22) Filed: Nov. 9, 2011 (74) Attorney, Agent, or Firm — Miles & Stockbridge PC
57 ABSTRACT
(65) Prior Publication Data One embodiment is directed to a method for controlling
US 2013/0018861 Al Jan. 17, 2013 access to a domain. The method includes receiving a request
from a workbook process for a shared lock on a primary lock
file and a secondary lock file controlling access to the domain,
L and providing the shared lock(s) when there is not an exclu-
Related U.S. Application Data sive lock. While the workbook process is still in progress, the
(60) Provisional application No. 61/506,367, filed on Jul. method may further ipclude receiving a request from a batch
11. 2011 process for an exclusive lock on the primary lock file, imme-
’ ’ diately providing an exclusive lock on the primary lock file
the batch process, receiving a request from the batch process
(51) Int.ClL for an exclusive lock on the secondary lock file, and providing
GOG6F 17/00 (2006.01) the exclusive lock on the secondary lock file to the batch
GO6F 17/30 (2006.01) process when there is not a shared lock on the secondary lock
(52) US.CL file.
CPC ..o, GO6F 17/30348 (2013.01) 20 Claims, 4 Drawing Sheets
200
5
235
230,) Eg
wi
235 ki
%ﬁ N g
\%\ 218 235 g
B £
: Duat Lock :
Mutex |\ i :
lock request
210.. 3
e ."
lock request Cantrotf
205,

Batch Update

U.S. Patent Dec. 22, 2015 Sheet 1 of 4 US 9,218,386 B2

200

¥ 2 oumooxDwwmo

lock request
Domain Access

Fig. 1

—

Batch Update

215
Dual Lock
Mutex
exclusive
lock request

e
R

US 9,218,386 B2

Sheet 2 of 4

Dec. 22, 2015

U.S. Patent

e

3
woesAg
asegejeq

N

N~

¢ B4

o)
{ }
| $T Aowapy H -
} H
t m_sﬂuo_\é E@HW\AW P oOnuo josin
" SOINPON jouoD Bunesado “ iy IOAUOS O
! |euoound 1omo 88820y Ulewoq “ g
_ I
! /] \ !
i £ N 31 mr\ f
| 8l |
| <7 |
" - m -
“ . 4} w 9c

“““ ‘ > sng 2 pieoghAay

l,_, ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ J\\\\ m w\\

" ‘ .
f = ; !
| ES ”
| 0 s “
! — J }
" N v |
f == ON ! ..m
i ée } 7/
| 30IAa(] 7 N Aeidsi
! 1055990.d UOoHEDIUNWIWOYD P 1~ =i
" w
i i
} H
- ____________ i

\

US 9,218,386 B2

Sheet 3 of 4

Dec. 22, 2015

U.S. Patent

¢ "Bi4

Gee-. saysiuly
sueys $s920.d joogyiom gie
ssa20.1d HOOgYIOM
sjiels
ssa20.4d yoogiom —50¢e
!
¥
)
.
1 3007 paljeys | | %007 SAISN|OX] | pooiypeseyg | ¥o01 Aiepuodsg . L0¢
(A% cle-) 10¢€
s | 307 SAISNjOX |75 yo07 Arewid
L€g” N ,, -00€
; 90¢
olie
gze
) ssaooe s)sonbau L
ove spud ssanoud yojeq 0l€
AN ssao0ad yojeq
UOolIBALE]S L 2}eq PlIOAR
o1 paseajas yoo] Arewnid ss9%%e sujeb
ssaosoe sjsanbal ssasosdyojeq | 0C€
$53204d HOOUMIOAL
0ge”

U.S. Patent

Dec. 22, 2015

Sheet 4 of 4

Receive request for shared lock on
primary

_~Is there exclusive™..
“lock on primary?_

. -~

N.b
Y

Provide the shared lock

Y

Receive request for shared lock on

secondary

405

- N~
-~ Can obtain™_
< sharedlockon >
~.gecondary? .

. e
N
~

W
Yes

Y

Provide the shared lock on secondary

\J

Release shared lock on primary

Y

Hold shared lock on secondary

Y
Receive request for exclusive lock on

primary
y

Immediately provide exclusive lock

Receive request for exclusive lock on
secondary

US 9,218,386 B2

400

402

Deny request f/or shared lock

on primary
403
404

408

e

’ Deny request for shared lock
: on secondary

407

- 408

--409

e 411

412

T A13

" Is there shared ™.
“dock on secondary?-

\\‘\ /‘/'
N -

o

No
¥

S—Y 5

415

Provide exclusive lock on secondary

416 -

A4
Hold both exclusive locks until batch
complete

414

Wait for workbook processes
to complete

Fig. 4

US 9,218,386 B2

1
DUAL LOCKING MECHANISM FOR A
DOMAIN

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority from provisional applica-
tion Ser. No. 61/506,367, filed on Jul. 11, 2011, the content of
which is hereby incorporated by reference in its entirety.

FIELD

One embodiment is directed generally to a computer sys-
tem, and, in particular, to a system and framework for the
execution of batch operations on a server.

BACKGROUND INFORMATION

Application servers executing specialized application soft-
ware, such as the retail predictive application server (RPAS)
from Oracle Corporation, may store permanent records in a
binary tree-based multi-dimensional database, which is
called a “domain.” The RPAS may be used, for example, to
generate forecasts, develop trading plans, and analyze cus-
tomer behavior. In a customer environment, RPAS users
access and store subsets of the domain data in smaller multi-
dimensional repositories called “workbooks.” A workbook
serves as a sandbox for the user. It allows users to execute
business rules, run what-if scenarios, and slice and dice the
data to visualize and validate results without requiring con-
tinuous access to domain data. Once a user is satisfied with
the calculations and results in their workbook, the user com-
mits the data back to the domain. Workbook interactions with
the domain include three major operations: workbook build,
workbook refresh, and workbook commit. Workbook build
refers to the construction of a new workbook and the loading
of a subset of the domain data into the workbook. Workbook
refresh refers to the refreshing of the data in an existing
workbook from the domain. Workbook commit refers to the
saving of the workbook data back to the domain.

SUMMARY

One embodiment is directed to a computer program
embodied on a computer readable medium. The computer
program is configured to control a process to perform a pro-
cess. The process includes receiving a request from a work-
book process for a shared lock on a primary lock file control-
ling access to a domain, providing the shared lock on the
primary lock file to the workbook process when there is notan
exclusive lock on the primary lock file, receiving a request
from the workbook process for a shared lock on the secondary
lock file, providing the shared lock on the secondary lock to
the workbook and releasing the shared lock on the primary
lock file substantially immediately after providing the shared
lock on the secondary lock file to the workbook process. The
process may further include, while the workbook process is
still in progress, receiving a request from a batch process for
an exclusive lock on the primary lock file, substantially
immediately providing an exclusive lock on the primary lock
file the batch process, receiving a request from the batch
process for an exclusive lock on the secondary lock file, and
providing the exclusive lock on the secondary lock file to the
batch process when there is not a shared lock on the secondary
lock file.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system according to one embodiment of
the invention;

FIG. 2 illustrates a system according to another embodi-
ment;

FIG. 3 illustrates a dual lock mutex according to one
embodiment; and

FIG. 4 illustrates a flow diagram of method according to
one embodiment.

DETAILED DESCRIPTION

One embodiment is directed to an intra-day enabler for an
application server, such as RPAS. The intra-day enabler pro-
vides an infrastructure and framework for the execution of
batch operations on a server domain while users actively work
on their workbooks. In certain embodiments, an access con-
trol mechanism referred to as a “dual lock mutex” (DLM) is
provided. The DLM uses primary and secondary lock files to
manage exclusive access of the batch processes, such as
advanced inventory planning (AIP) replenishment, to the
domain in concert with the ongoing workbook operations.

An application server, such as RPAS, may include a lock-
ing infrastructure that allows multiple processes to access the
same data set in the domain. As a result, two or more pro-
cesses can read the same dataset concurrently. However,
write-access is exclusive such that a dataset cannot be
accessed for read or write if another process has a write lock
on the same data. Data access control may be implemented
using lock files. In a multi-process situation, processes com-
pete for access to a set of data that is already accessed. If a
process cannot take over the lock within a certain period
(timeout period), a time-out notification is presented to the
user for retrying the operation.

Generally, users build, refresh, and commit RPAS work-
books during the day. In a multi-user environment, this
implies hundreds of access requests on the domain data.
Previously, RPAS was unable to support batch-type opera-
tions on a domain that was subject to workbook interactions.
A batch operation would fail if it could not take over the lock
on adataset that is already locked by workbook build, refresh,
or commit operations. Administrators were, therefore,
required to shut down the entire user community and block all
workbook operations in order to be able to run batch opera-
tions over a domain. Consequently, all forms of batch opera-
tions were commonly scheduled on a nightly or weekend
basis to avoid interrupting user interaction with the server.

Embodiments of the invention, however, allow for the
execution of batch processes during daytime, peak hours
while users actively perform workbook operations. Accord-
ing to certain embodiments, already initiated and ongoing
workbook operations are allowed to complete before starting
a batch process. Then, once the batch process has started,
embodiments of the invention prevent the initiation of further
workbook operations, but allow users to continue running
workbook calculations and to submit commit requests which
will be put into a queue. The commit requests that were
queued are then executed after the batch process has com-
pleted.

FIG. 1 illustrates a block diagram of a system or infrastruc-
ture 200 configured for concurrent execution of batch and
workbook processes. In one embodiment, system 200 pro-
vides for the execution of batch operations on an RPAS
domain without interruption to or from workbook operations.
As illustrated in FIG. 1, system 200 includes a batch process
205 and an intra-day process manager 210. When batch pro-

US 9,218,386 B2

3

cess 205 is to be executed, batch process 205 notifies intra-
day process manager 210. In some embodiments, administra-
tor 230 may initiate the request to execute batch process 205.
Alternatively, batch process 205 may automatically and/or
periodically initiate a request to execute.

When intra-day process manager 210 is notified by admin-
istrator 230 or batch process 205 that it is ready to execute,
intra-day process manager 210 sends an exclusive lock
request to domain access control 220. In certain embodi-
ments, domain access control 220 may utilize a dual lock
mutex (DLM) 215 as an access control mechanism for con-
trolling access to domain 225. DLM 215 utilizes primary and
secondary lock files to manage exclusive access of batch
process 205 to domain 225, as will be discussed in more detail
below. In one embodiment, DLM 215 allows all ongoing
workbook operations 235 to complete before beginning batch
process 205.

Although a single domain 225 is illustrated in FIG. 1, two
or more domains may be provided in accordance with other
embodiments. For instance, according to one embodiment, a
single master domain may be provided along with one or
more local domains. According to certain embodiments a
DLM 215 may be provided for the local domains and a
separate DLLM 215 for the master domain. As a result, only a
subset of the local domains will be locked during the batch
process.

The following is an example of computer program pseudo-
code that may be executed by domain access control 220, for
example, according to an embodiment:

-d <domain> (Refers to a local or master domain.)

-process <processName> | -script <scriptName>

[-timeout <minutes™>] (The process will timeout if it cannot get access
during this time. By default there is no timeout.)

- message <messageString™> (Message presented to workbook user.)

[-wait <minutes>] (Time to wait before starting the process. Even if
domain access is granted the process does not start until end of wait
time. The default is 0.)

[-partitions <posl, pos2,...>] (Partition positions (e.g., deptl, dept2,
etc.) that determine local domains accessed by the batch process. If
not provided, assumes all local domains as well as the master are
accessed.)

[masterInBatch] (Indicates whether the master domain data is accessed by
the batch process. In case of access, master domain will be
included in the exclusive lock request. By default does not assume
access to master.)

[-args <argumentString™>] (Process or script arguments enclosed in double
quotes.)

FIG. 2 illustrates a block diagram of a domain access
control system 10 that allows for the execution of batch opera-
tions on a server domain while users actively work on their
workbooks, according to one embodiment. In an embodi-
ment, system 10 may be a RPAS intra-day enabler (RIDE)
that includes an access control system. System 10 can include
a bus 12 or other communications mechanism for communi-
cating information between components of system 10. Alter-
natively, the components of system 10 may communicate
with each other directly without the use of bus 12.

System 10 also includes a processor 22, coupled to bus 12,
for processing information and executing instructions or
operations. Processor 22 may be any type of general or spe-
cific purpose processor. System 10 further includes a memory
14 for storing information and instructions to be executed by
processor 22. Memory 14 can be comprised of any combina-
tion of random access memory (“RAM”), read only memory
(“ROM™), static storage such as a magnetic or optical disk, or
any other type of machine or computer readable media. Sys-
tem 10 further includes a communication device 20, such as a

10

15

20

25

30

35

40

45

50

55

60

65

4

network interface card or other communications interface, to
provide access to a network. As a result, a user may interface
with system 10 directly or remotely through a network or any
other method.

Computer readable media may be any available media that
can be accessed by processor 22 and includes both volatile
and nonvolatile media, removable and non-removable media,
and communication media. Communication media may
include computer readable instructions, data structures, pro-
gram modules or other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any
information delivery media.

Processor 22 may be coupled via bus 12 to a display 24,
such as a Liquid Crystal Display (“LCD”), for displaying
information or data to a user. A keyboard 26 and a cursor
control device 28, such as a computer mouse, may be coupled
to bus 12 to enable a user to interface with system 10.

Processor 22 and memory 14 may also be coupled via bus
12 to a database system 30 and, thus, may be able to access
and retrieve information stored in database system 30.
Although only a single database is illustrated in FIG. 1, any
number of databases may be used in accordance with certain
embodiments. In some embodiments, database system 30
may store retail and/or historical information that can be used
to generate forecasts, develop trading plans, and analyze cus-
tomer behavior. In one embodiment, database system 30 may
be domain data 225 illustrated in FIG. 1.

In one embodiment, memory 14 stores software modules
that provide functionality when executed by processor 22.
The modules may include an operating system 15 that pro-
vides operating system functionality for system 10. The
memory may also store a domain access control module 16,
which can provide the functionality of managing the exclu-
sive access of the batch processes to the domain. System 10
may also include one or more other functional modules 18 to
provide additional functionality.

Database system 30 may include a database server and any
type of database, such as a relational or flat file database.
Database system 30 may store attributes related to retail cus-
tomers and/or products. Database system 30 may also store
any other data required by the domain access control module
16, such as domain data, or any other data associated with
system 10 and its associated modules and components.

In certain embodiments, domain access control module 16,
and other functional modules 18 may be implemented as
separate physical and logical units or may be implemented in
a single physical and logical unit. Furthermore, in some
embodiments, domain access control module 16, and other
functional modules 18 may be implemented in hardware, or
as any suitable combination of hardware and software. In one
embodiment, domain access control module 16 may be
implemented in or execute the functionality of domain access
control 220 of FIG. 1.

In one embodiment, domain access control module 16 is
configured to control system 10 to perform a process of pro-
viding a batch process with exclusive access to the domain.
When system 10 receives a request from a workbook process
for a shared lock on a primary lock file of DLM 215, domain
access control module 16 will provide the shared lock to the
requesting workbook process if there is no exclusive lock on
the primary lock file. For example, there may be an exclusive
lock on the primary lock file when a batch process is operat-
ing. System 10 may then receive a request from the workbook
process for a shared lock on a secondary lock file of DLM
215. Domain access control module 16 provides the work-
book process with the shared lock on the secondary lock file.

US 9,218,386 B2

5

If for any reason the shared lock on the secondary lock file
cannot be granted to the workbook process, the workbook
process will be denied operation and it must release the shared
lock on the primary lock file immediately.

Domain access control module 16 is configured to release
the shared lock on the primary lock file immediately after
providing the shared lock on the secondary lock file to the
workbook process. In some embodiments, domain access
control module 16 holds the shared lock on the secondary
lock file until the workbook process has completed. The
shared lock on the secondary lock file is released as soon as
the workbook process is complete.

According to an embodiment, while the workbook process
is operating or in progress, system 10 may receive a request
from a batch process for an exclusive lock on the primary lock
file. Domain access control module 16 is configured to imme-
diately provide the requesting batch process with the exclu-
sive lock onthe primary lock file. System 10 may then receive
a request from the batch process for an exclusive lock on the
secondary lock file. Domain access control module 16 is
configured to determine whether the workbook process has
completed and to provide the exclusive lock to the batch
process once the workbook process has completed. Further,
in one embodiment, domain access control module 16 is
configured to hold the exclusive lock on both the primary and
secondary lock files through completion of the batch process.

FIG. 3 illustrates the utilization of the primary lock files
300 and secondary lock files 301 of DLM 215, according to
an embodiment. In the example illustrated in FIG. 3, a work-
book process and batch process are attempting to access the
domain data.

According to the example of FIG. 3, prior to requesting a
shared lock on secondary lock file 301, the workbook process
always checks primary lock file 300 by first requesting a
shared lock on primary lock file 300. In the absence of an
executing batch process, the workbook process is able to
obtain a shared lock 306 on primary lock file 301 and a shared
lock 307 on secondary lock file 301. Once the workbook
process takes shared control 307 of secondary lock file 301, it
immediately relinquishes control on primary lock file 300 and
the workbook process starts at 305.

While the workbook process has started and is in progress,
a request for a batch process may be received at 310. The
request from the batch process will cause an immediate exclu-
sive lock 311 on primary lock file 300. The ongoing work-
book process is allowed to finish, and no other operation can
start due to the batch process having an exclusive lock 311 on
primary lock file 300. As soon as the workbook process is
completed at 315, shared lock 307 on secondary lock file 301
is released. The batch process is then able to apply an exclu-
sive lock 312 on the secondary lock file 301, and the batch
process can access and process domain data at 320.

Once the batch process is completed at 325, it releases the
exclusive locks 311 and 312 on primary lock file 300 and
secondary lock file 301. As a result, subsequent workbook
process can again access the domain data. For instance, a
second workbook process may request access at 330, obtain a
shared lock 331 on primary lock file 300, and obtain a shared
lock 332 on secondary lock file 301. Then, at 340, the second
workbook process releases the shared lock 331 on primary
lock file 300 to avoid batch starvation.

FIG. 4 illustrates a flow diagram of a method for control-
ling access to a domain, according to one embodiment. In
certain embodiments, the functionality of the flow diagram of
FIG. 4 is implemented by software stored in memory or other
computer readable or tangible media of a server, and executed
by a processor of the server. In other embodiments, the func-

10

15

20

25

30

35

40

45

50

55

60

65

6

tionality may be performed by hardware (e.g., through the use
of an application specific integrated circuit (ASIC), a pro-
grammable gate array (PGA), a field programmable gate
array (FPGA), etc.), or any combination of hardware and
software.

Referring to FIG. 4, at 400, a request is received from a
workbook process for a shared lock on a primary lock file of
a DLM. At 401, it is determined whether there is an exclusive
lock on the primary lock file. If there is an exclusive lock on
the primary lock file, then the request is denied at 402. If there
is not an exclusive lock, then, at 403, the shared lock on the
primary lock file is provided to the workbook process. At 404,
a request is received from the workbook process for a shared
lock on the secondary lock file. At 405, it is determined
whether a shared lock on the secondary lock file can be
provided, and, if for any reason it cannot be provided, then the
request is denied at 406 and the shared lock on the primary
lock file is released. Generally, if the workbook process is
successfully able to obtain a shared lock on the primary lock
file, then it should be able to obtain a shared lock on the
secondary lock file. Embodiments of the invention, however,
provide an error checking step at 405 to ensure that the work-
book process is properly able to obtain a shared lock on the
secondary lock file. According to one embodiment, if an error
condition occurs and the workbook process cannot obtain a
shared lock on the secondary lock file, then it should imme-
diately release the shared lock it had already obtained on the
primary lock file. The existence of an error condition may be
indicative, for example, of hardware failure or access rights
problems on the server.

If the shared lock on the secondary lock file can be pro-
vided, then, at 407, the shared lock on the secondary lock file
is provided to the workbook process. Immediately after pro-
viding the shared lock on the secondary lock file to the work-
book process, the shared lock on the primary lock file is
released at 408. The shared lock on the secondary lock file is
held, at 409, until completion of the workbook process.

At 410, a request may be received from a batch process for
an exclusive lock on the primary lock file. The request from
the batch process may be received while the workbook pro-
cess is still in progress. At 411, an exclusive lock on the
primary lock file is immediately provided to the requesting
batch process. At 412, a request is received from the batch
process for an exclusive lock on the secondary lock file. Then,
at 413, it is determined whether there is a shared lock on the
secondary lock file. If there is not a shared lock on the sec-
ondary lock file, then the batch process is provided with the
exclusive lock on the secondary lock file at 415. If there is a
shared lock on the secondary lock file, then, at 414, the
process waits for the workbook process(es) to complete
before proceeding to 413 and again checking whether there is
a shared lock on the secondary lock file. At 416, both the
exclusive locks on the primary and secondary lock files are
held until completion of the batch process.

Based on the embodiments discussed herein, a system
administrator can request exclusive access to a domain, such
as an RPAS domain, for running a high priority batch process
concurrent with intra-day operations. In the absence of this
functionality, a system administrator would be required to
shut down the domain and block the entire user community in
order to run the batch processes on the domain. Prior to
shutting down, administrators would need to provide lead
time to all users so they could save their work and commit
their changes before starting the batch operations. Users
would be locked out from access to their workbooks for the
entire time that the batch process was in progress.

US 9,218,386 B2

7

However, as discussed above, embodiments of the present
invention allow all the ongoing workbook operations that
gain domain access prior to the batch process to complete.
Therefore, the batch process execution will not cause abnor-
mal termination of any of the workbook operations. Further,
users will be able to use their workbooks and access domain
data in all local domains not accessed by the batch process.

Additionally, embodiments provide a delayed start feature
such that new workbook operations can be blocked ahead of
the batch process. Although workbook operations may be
blocked, certain embodiments allow users to submit commit
requests during batch executions and such requests will be
queued and executed after the batch process is completed.
Moreover, embodiments of the invention allow workbook-
specific operations that do not require domain access (edits,
calculations, etc.) concurrent with the batch process. In this
situation, users will receive a configurable message when
they try to access domain data. In the event that the batch
process is blocked by one or more workbook operations,
information around the blocking process ID, localDomain
1D, user ID, and operation type will be generated.

As a result, embodiments of the invention provide a useful
framework to both administrators and users. There is no need
for domain shutdown or for advance user notices, and no
complete blockage of users. All users can continue workbook
operations, such as running what-if scenarios, formatting,
saving, and many other operations that do not require instant
access to the domain.

It should be noted that many of the functional features
described in this specification have been presented as mod-
ules, applications or the like, in order to more particularly
emphasize their implementation independence. For example,
amodule may be implemented as a hardware circuit compris-
ing custom VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program-
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices or the like.

Modules may also be partially implemented in software for
execution by various types of processors. An identified mod-
ule of executable code may, for instance, comprise one or
more physical or logical blocks of computer instructions
which may, for instance, be organized as an object, procedure,
or function. Nevertheless, the executables of an identified
module need not be physically located together, but may
comprise disparate instructions stored in different locations
which, when joined logically together, comprise the module
and achieve its stated purpose.

Indeed, a module of executable code or algorithm could be
a single instruction, or many instructions, and may even be
distributed over several different code segments, among dif-
ferent programs, and across several memory devices. Simi-
larly, operational data may be identified and illustrated herein
within modules, and may be embodied in any suitable form
and organized within any suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices, and may exist, at least partially, merely as
electronic signals on a system or network.

Several embodiments are specifically illustrated and/or
described herein. However, it will be appreciated that modi-
fications and variations of the disclosed embodiments are
covered by the above teachings and within the purview of the
appended claims without departing from the spirit and
intended scope of the invention.

5

25

40

45

50

65

8

What is claimed is:

1. A computer program, embodied on a non-transitory
computer readable medium, the computer program config-
ured to control a processor to perform a dual locking process
for a domain, the dual locking comprising:

creating primary and secondary lock files to manage exclu-

sive access to the domain by a batch process and shared
access to the domain by a plurality of concurrently-
executing workbook processes, each workbook process
operating on a local copy of at least a subset of the data
stored in the domain, each workbook process perform-
ing at least one of a build operation, a refresh operation
or a commit operation;

in response to a request from a workbook process, provid-

ing a shared lock on the primary lock file to the work-
book process when there is not an exclusive lock on the
primary lock file;

in response to a request from a workbook process holding

a shared lock on the primary lock file, providing a shared
lock on the secondary lock file to the first workbook
process, releasing the shared lock on the primary lock
file, and releasing the shared lock on the secondary lock
file after the workbook process is completed;

in response to a request from the batch process, providing

an exclusive lock on the primary lock file to the batch
process when there is not a shared lock on the primary
lock file;

while the batch process is holding the exclusive lock on the

primary lock file, in response to a request from the batch
process, providing an exclusive lock on the secondary
lock file to the batch process after all of the shared locks
on the secondary lock file have been released by the
workbook processes; and

while the batch process is holding the exclusive locks on

the primary and secondary lock files, submitting work-
book process commit operations to a queue for execu-
tion after the exclusive locks on the primary and second-
ary lock files have been released by the batch process.

2. The computer program according to claim 1, further
comprising:

holding both the exclusive lock on the primary lock file and

the exclusive lock on the secondary lock file until
completion of the batch process; and

releasing both the exclusive locks at the same time when

the batch process is completed.

3. The computer program according to claim 1, wherein the
batch process can access the domain when all of the work-
book processes are completed.

4. The computer program according to claim 1, wherein the
shared lock or the exclusive lock on the secondary lock file
results in access to the domain.

5. The computer program according to claim 4, wherein,
when there is an exclusive lock on the primary lock file, no
additional workbook processes can access the domain.

6. The computer program according to claim 4, further
comprising allowing workbook processes to execute that do
not require access to the domain during execution of the batch
process.

7. The computer program according to claim 1, wherein the
domain comprises a binary tree-based multi-dimensional
database.

8. The computer program according to claim 1, wherein the
dual locking further comprises:

when the shared lock on the secondary lock file cannot be

provided to the workbook process, denying the request
for the shared lock on the secondary file and releasing
the shared lock on the primary lock file.

US 9,218,386 B2

9

9. The computer program according to claim 1, wherein the
domain comprises a master domain and one or more local
domains, and wherein separate primary and secondary lock
files are provided for the master domain and each local
domain.

10. An apparatus, comprising:

a processor; and

a domain access control module, wherein the domain

access control module and the processor are configured

to control the apparatus to perform a dual locking pro-

cess comprising:

creating primary and secondary lock files to manage
exclusive access to the domain by a batch process and
shared access to the domain by a plurality of concur-
rently-executing workbook processes, each work-
book process operating on a local copy of at least a
subset of the data stored in the domain, each work-
book process performing at least one of a build opera-
tion, a refresh operation or a commit operation;

in response to a request from a workbook process, pro-
viding a shared lock on a primary lock file to the
workbook process when there is not an exclusive lock
on the primary lock file;

in response to a request from the workbook process
holding a shared lock on the primary lock file, pro-
viding a shared lock on the secondary lock file to the
workbook process, releasing the shared lock on the
primary lock file, and releasing the shared lock on the
secondary lock file after the workbook process is
completed;

in response to a request from a batch process, providing
an exclusive lock on the primary lock file to the batch
process when there is not a shared lock on the primary
lock file;

while the batch process is holding the exclusive lock on
the primary lock file, in response to a request from the
batch process, providing an exclusive lock on the
secondary lock file to the batch process after all of the
shared locks on the secondary lock file have been
released by the workbook processes; and

while the batch process is holding the exclusive locks on
the primary and secondary lock files, submitting
workbook process commit operations to a queue for
execution after the exclusive locks on the primary and
secondary lock files have been released by the batch
process.

11. The apparatus according to claim 10, further compris-
ing:

holding both the exclusive lock on the primary lock file and

the exclusive lock on the secondary lock file until
completion of the batch process; and

releasing both the exclusive locks at the same time when

the batch process is completed.

12. The apparatus according to claim 10, wherein the batch
process can access the domain when all of the workbook
processes are completed.

13. The apparatus according to claim 10, further compris-
ing:

denying the request for the shared lock on the primary lock

file when there is an exclusive lock on the primary lock
file.

5

20

25

30

35

40

45

50

55

60

10

14. The apparatus according to claim 10, wherein the
domain comprises a binary tree-based multi-dimensional
database.

15. The apparatus according to claim 10, wherein the appa-
ratus is included in an application server.

16. The apparatus according to claim 10, wherein the dual
locking process further comprises:

when the shared lock on the secondary lock file cannot be

provided to the workbook process, denying the request
for the shared lock on the secondary file and releasing
the shared lock on the primary lock file.

17. A method for controlling access to a domain, the
method comprising:

creating primary and secondary lock files to manage exclu-

sive access to the domain by a batch process and shared
access to the domain by a plurality of concurrently-
executing workbook processes, each workbook process
operating on a local copy of at least a subset of the data
stored in the domain, each workbook process perform-
ing at least one of a build operation, a refresh operation
or a commit operation;

in response to receiving a request from a workbook pro-

cess, providing a shared lock on the primary lock file to
the first workbook process when there is not an exclusive
lock on the primary lock file;

in response to receiving a request from a workbook process

holding a shared lock on the primary lock file, providing
a shared lock on the secondary lock file to the first
workbook process, releasing the shared lock on the pri-
mary lock file, and releasing the shared lock on the
secondary lock file after the first workbook process is
completed;

in response to a request from the batch process, providing

an exclusive lock on the primary lock file to the batch
process when there is not a shared lock on the primary
lock file;

while the batch process is holding the exclusive lock on the

primary lock file, in response to a request from the batch
process, providing an exclusive lock on the secondary
lock file to the batch process after all of the shared locks
on the secondary lock file have been released by the
workbook processes; and

while the batch process is holding the exclusive locks on

the primary and secondary lock files, submitting work-
book process commit operations to a queue for execu-
tion after the exclusive locks on the primary and second-
ary lock files have been released by the batch process.

18. The method according to claim 17, further comprising
holding both the exclusive lock on the primary lock file and
the exclusive lock on the secondary lock file until completion
of the batch process.

19. The method according to claim 17, wherein the domain
comprises a binary tree-based multi-dimensional database.

20. The method according to claim 17, further comprising:

when the shared lock on the secondary lock file cannot be

provided to the workbook process, denying the request
for the shared lock on the secondary file and releasing
the shared lock on the primary lock file.

#* #* #* #* #*

